
A GRASP algorithm with RNN based local

search for designing a WAN access network

Héctor Cancela a,1, Franco Robledo a,b,1,2 and Gerardo Rubino b,2

aInstituto de Computación, Fac. de Ingenieŕıa, Universidad de la República
J. Herrera y Reissig 565, Montevideo, Uruguay

bIRISA/INRIA
Campus de Beaulieu, Rennes 35042 CEDEX, France

Abstract

The Greedy Randomized Adaptive Search Procedure (GRASP) is a well-known
metaheuristic for combinatorial optimization. In this work, we introduce a GRASP
for designing the access network topology of a Wide Area Network (WAN). This
problem is NP-hard, and can modeled as a variant of the Steiner Problem in Graphs.

The proposed GRASP employs a Random Neural Network (RNN) model in the
local search phase, in order to improve the solutions delivered by the construction
phase, based on a randomized version of the Takahashi-Matsuyama algorithm. Ex-
perimental results were obtained on 155 problem instances of different topological
characteristics, generated using the problem classes in the SteinLib repository, and
with known lower bounds for their optima. The algorithm obtained good results,
with low average gaps with respect to the lower bounds in most of the problem
classes, and attaining the optimum in 40 cases (more than 25% of the problem set).

Key words: metaheuristic; topological design; GRASP; RNN

1 Introduction

A wide area network (WAN) can be seen as a set of sites and a set of com-
munication lines that interconnect the sites. A typical WAN is organized as
a hierarchical structure integrating two levels: the backbone network and the
access network composed of a certain number of local access networks (5).

1 [cancela,frobledo]@fing.edu.uy
2 [frobledo,rubino]@irisa.fr

Preprint submitted to Elsevier Science 21 June 2004

rubino
to appear in IEIEC Transactions (2005)improvement from paper in LACGA 2004, Santiago, aug. 2004



Each local access network usually has a tree-like structure, rooted at a sin-
gle site of the backbone network, and connects users (terminal sites) either
directly to this backbone site or to a hierarchy of intermediate concentrator
sites which are connected to the backbone site. The backbone network has
usually a meshed topology, and its purpose is to allow efficient and reliable
communication between the switch sites of the network that act as connection
points for the local access networks.
Let SC be the set of sites where concentrator equipment can be installed in or-
der to diminish the cost of the access network and ST the set of terminal sites
(the clients). Considering the network of feasible connections on the WAN as
a weighted, undirected graph, the Access Network Design Problem (ANDP)
consists of finding a subgraph of minimum cost such that ∀st ∈ ST there exists
a path from st to the backbone network (which can be represented by a single
fixed node z). We introduce the notation used to formalize the problem:

• S = ST ∪ SC ∪ {z} is the set of all nodes.
• C = {cij}i,j∈S is the matrix which gives for any pair of sites of S, the cost

of laying a line between them. When the direct connection between i and j
is not possible, we take cij =∞.
• E = {(i, j);∀i, j ∈ S such that cij <∞}, this is the set of feasible connec-

tions between sites of S.
• G = (S,E) is the graph of feasible connections on the Access Network.

We define our Access Network Design Problem ANDP(G(S,E), C) as the
problem of finding a subgraph T ⊂ G of minimum cost such that ∀st ∈ ST
there exists a unique path from st to node z and such that terminal sites can
not be used as intermediate nodes (they must have degree 1 in the solution).

This problem belongs to the NP-Hard class (this can be proved by reducing
the Steiner Problem in graphs to it). Some references in this area and related
problems are (5; 6). This paper proposes a polynomial time heuristic based on
the GRASP methodology and using a RNN model in the GRASP local search
phase for approximately solving the ANDP. Section 2 presents the GRASP
metaheuristic, the RNN model, and their customizations to solve the ANDP.
Section 3 includes computational results obtained on a set of 155 problem
instances, including topologies with hundreds of nodes.

2 GRASP/RNN descriptions and customization for the ANDP

GRASP is a well known metaheuristic, which has been applied for solving
many hard combinatorial optimization problems with very good results. A
GRASP is an iterative process, in which each iteration consists of two phases:
construction and local search. The construction phase builds a feasible solu-

2



tion, whose neighborhood is explored by local search. The best solution over
all GRASP iterations is returned as the result. Details of this metaheuristic
can be seen in (4).
The Random Neural Network introduced by Gelenbe (1) is a novel model,
which has been applied with success to different optimization problems (2; 3).
In a RNN signals circulate between a set of neurons, and are either positive
or negative. Neurons have a potential which is a non-negative integer; it is in-
creased (resp. decreased) by 1 when a positive (resp. negative) signal arrives. It
is also decreased by one when the neuron fires. The neuron is excited if its po-
tential is strictly positive, and then it fires after i.i.d. exponentially distributed
periods; firing means sending a signal (positive or negative) to another neuron,
or outside. Signals coming from outside form Poisson processes. This model is
parameterized by the following elements: the number n of neurons, the firing
rate ri of neuron i, the probability p+

ij (resp. p−ij), for a signal sent by i, to go
to j as a positive (resp. negative) one, the probability di = 1 −∑j(p

+
ij + p−ij)

of the signal to go outside, and the exogenous rates αi and βi of the signal
flows of positive and negative units arriving at i. E. Gelenbe proved in (1)
that the probability qi that neuron i is excited, in steady state, is given by
qi = λ+

i /(ri + λ−i ), where λ+
i and λ−i are the mean throughputs of positive

and negative units at i. We have λ+
i =

∑n
j=1 qj%

+
ji + αi, λ

−
i =

∑n
j=1 qj%

−
ji + βi,

where the weights are %+
ji = rip

+
ji, %

−
ji = rip

−
ji. Gelenbe also gave the stability

conditions associated with this system. The computation of the qi’s is thus a
fixed point problem. During this computation, if we get a value qi > 1 then
we force qi = 1 until convergence (we say that neuron i is saturated).
Next, we apply the concepts of GRASP to the approximate solution of the
ANDP, using a path-based construction phase and a RNN based local search,
which are presented below.

2.1 Construction Phase

Our construction phase can be seen as a customized and randomized version
of the Takahashi-Matsuyama algorithm (8), which is a heuristic for computing
a (hopefully low cost) Steiner tree. The algorithm (shown in Figure 2) takes
as inputs the network G of feasible connections on the access network and
the matrix of connection costs C. The current solution Tsol is initialized with
the node z. Iteratively the construction phase adds new terminal nodes to
the current solution. On each iteration, the algorithm chooses randomly a
terminal node s̄t not yet included in the current solution Tsol and computes
the k shortest paths from s̄t to Tsol (using any standard k shortest paths
algorithm). These paths are stored in a restricted candidate list Lp. A path p is
randomly (and uniformly) selected from Lp and added to the current solution.
This process is repeated until all the terminal nodes have been added; then
the feasible solution Tsol is returned.

3



Procedure ANDP Construction Phase;
Input: G = (S,E), C;

1 ∀st ∈ ST a unique identifier nt
is assigned;

2 Tsol ← {z}; Y ← ∅;
3 while (Y \ ST ) 6= ∅ do
4 s̄t ← ArgMax{nt|st ∈ (ST \Y)};
5 Lp ← the k shortest paths from s̄t to Tsol;
6 p← Select Random(Lp);
7 Tsol ← Tsol ∪ {p}; Y ← Y ∪ {s̄t};
8 end while;
9 return Tsol;
end ANDP Construction Phase;

Procedure ANDP Local Search;
Input: W+ = {%+

ij}, W
− = {%−ij}, Tsol, G = (S,E), C;

1 I ← CONCENTRATORS(Tsol); J ← ST ∪ {z};
2 Tbest ← Tsol;
3 while (I ∪ J) 6= S do
4 qs ← 1, ∀s ∈ J ;
5 Compute the solution to the equation:

F (q) = q given by the Gelenbe Theorem;
6 sc ← ArgMax{qs|s ∈ (SC \ J)}; J ← J ∪ {sc};
7 if (sc 6∈ I) then

8 ŜC ← CONCENTRATORS(J);

9 H ← subgraph induced by (I ∪ ŜC ∪ {z});

10 Ĥ ← connected comp. of H such that z ∈ Ĥ;
11 T ← minimal spanning tree for Ĥ;
12 Compute ∀st ∈ ST :

e← the edge of minimum cost from st to T ;
T ← T ∪ {e};

13 Iteratively remove all concentrator sites
from T with degree 1;

14 if COST(T ) < COST(Tbest) then Tbest ← T ;
15 end if;
16 end while;
17 return Tbest;
end ANDP Local Search;

Fig. 1. Construction and Local Search pseudo-codes.

2.2 Local Search Phase

We propose a procedure that differs substantially from a classical local search.
The algorithm (shown in Figure 2) takes as inputs the solution Tsol (computed
in the Construction Phase), the network G = (S,E) and the matrix of con-
nection costs C. The algorithm searches for a better solution using the under-
lying neural network with the objectives of determining iteratively the order
in which to analyze each concentrator node non-present in Tsol and of eval-
uating the benefit of its inclusion in the current solution. On each iteration,
the concentrator node (non belonging to Tsol and that has not been previously
analyzed) selected as potential improver will be that one whose associate neu-
ron has greater value of qj (asymptotically “the most excited one”). When all
the concentrators have been evaluated, the best solution found is returned.

The underlying RNN is defined as follows. There exists a neuron for each
node of S. The values for the excitatory and inhibitory rates are defined as:
%+
ij = c̄/cij if (i, j) ∈ E, %−ij = 1 if (i, j) /∈ E and ri =

∑
j(%

+
ij + %−ij), where c̄

is the average edge cost in graph G. The other rates are zero and exogenous
signals do not exist. In this way, if a neuron is excited and has low connection
costs with their neighboring neurons (i.e. high excitatory rates), it will have a
greater excitatory influence on its neighborhood (the adjacent neurons). For
the nodes that necessarily will integrate the solution (these are ST ∪ {z})
the associated neurons are artificially excited by means of the assignment
qi = 1,∀i ∈ ST ∪ {z}.

4



3 Performance Tests and Conclusions

We present here some experimental results obtained with the GRASP-RNN
algorithm. The algorithm was implemented in ANSI C. The experiments were
obtained on a Pentium IV with 1.7 GHz, and 1 Gbytes of RAM, running under
Windows XP. All instances were solved with identical GRASP parameter set-
tings. The candidate list size was ListSize = 10, and the maximum number of
iterations MaxIter = 100. These values were chosen from GRASP reference
literature.

We used a large test set, by modifying the Steiner Problem instances from
SteinLib (7). This library contains many problem classes of widely different
graph topologies. We considered all problems in all classes; for each problem,
we selected the terminal node of the original problem with greatest degree as
the z node; the Steiner nodes as concentrator sites, and the terminal nodes
as terminal sites. Also, all the edges between terminal sites were deleted (as
they are not allowed in feasible ANDP solutions). If the resulting topology
was unconnected, the problem instance was discarded. By this process, we
obtained 155 ANDP instances. Notice that, since in the ANDP the terminals
cannot be used as intermediate nodes the cost of an SPG optimum is a lower
bound for the optimum of the corresponding ANDP.

Table 1 shows a summary of computational results. The first column con-
tains the names of the original Steinlib classes and the entries from left
to right are: the number of customized instances (NI), the size of the se-
lected instances in terms of number of nodes and edges respectively, the
number of instances where the lower bound was obtained reaching there-
fore the optimum (NOPT), the average of the improvement of the results
of the local search phase over the construction phase (Avg. LSI), the aver-
age running time per iteration, and the average of the gap of the GRASP
solution respect to the lower bound (Avg. LB GAP). The average improve-
ment is computed as Avg. LSI=

∑
p∈Set LSI(p)/NI, where for problem p,

LSI(p) = 100 × [(
∑MaxIter
i=1 (CCi − LCi)/CCi)]/MaxIter, CCi and LCi be-

ing the costs of the solutions delivered in iteration i by the Construction
Phase and the Local Search Phase respectively. The average gap is Avg.
LB GAP=

∑
p∈Set LB GAP(p)/NI (where for problem p, LB GAP(p) = 100×

(Best Cost Found− Lower Bound)/Lower Bound).

The results show that the algorithm finds in most cases good quality solu-
tions. In 40 instances (out of 155) we reached the lower bound and therefore
optimality. As in general only lower bounds and not true optima are known, it
is natural that a gap persists in many cases; as shown in the table, with wide
variations depending on the problem class. Even then, in most cases this gap
is quite small (less than 5% gap average in 7 over 12 problem classes).

5



Testset NI Nodes Edges NOPT Avg. LSI Avg. secs/itr Avg. LB GAP

C 6 500 625-2500 - 19.95% 12.13 0.41%

MC 2 97-120 4656-7140 1 24.89% 2.07 5.90%

X 2 52-58 1326-1653 - 11.00% 0.73 39.56%

PUC 4 64-128 192-750 2 21.04% 1.27 0.14%

I080 57 80 120-3160 13 17.01% 0.85 9.09%

I160 18 160 240-2544 7 21.46% 3.18 3.23%

I320 10 320 480-10208 2 24.93% 9.2 2.28%

I640 10 640 960-4135 2 24.33% 27.15 3.01%

P6E 10 100-200 180-370 2 23.75% 1.83 16.49%

P6Z 5 100-200 180-370 1 22.01% 1.10 23.22%

WRP3 15 84-886 149-1800 7 20.3% 17.00 0.00028%

WRP4 16 110-844 188-1691 3 32.36% 22.56 0.00109%

Table 1: Computational results.

Another point of interest is that the RNN model in the local search phase
was used with the aim of capturing global connectivity information about the
graph and to determine the order in which the concentrator nodes non-present
in the solution delivered by the construction phase are chosen to improve the
solution delivered by the greedy construction phase. We observe that for all
problem classed, the local search phase improved significantly the solutions
built by the construction phase; over 20% average improvement for most prob-
lem classes (and always over 10% average improvement).

References

[1] E. Gelenbe, “Stability of the random neural network model”, Neural
Computation, vol. 5, no. 2, pp. 239-247 (1990).

[2] E. Gelenbe and F. Batty, “Minimum cost graph covering with the
random neural network”, in Computer Science and Operations Re-
search. New York: Pergamon, pp. 139-147 (1992).

[3] E. Gelenbe, V. Koubi, and F. Pekergin, “Dynamical random neu-
ral network approach to the traveling salesman problem”, in Proc.
Symp. Syst., Man., Cybern., pp. 630-635 (1993).

[4] T.A. Feo and M.G.C Resende, “Greedy randomized adaptive search
procedures”, Journal of Global Optimization, 6:109-133 (1995).

[5] M. Priem and F. Priem, “Ingénierie des WAN”, ISBN 2-10-004510-
5, Dunod InterEditions (1999).

[6] C. D. Randazzo, H. P. L. Luna and P. Mahey, “Benders decomposi-
tion for local access network design with two technologies”, Discrete
Math.& Theoretical Comp. Science, vol. 4 no. 2, pp. 235-246 (2001).

[7] http://elib.zib.de/steinlib/testset.php (last access: April 28, 2004).
[8] H. Takahashi and A. Matsuyama, “An approximate solution for the

Steiner problem in graphs”, Math. Jpn., 24:537-577 (1980).

6




